Tetralogy of Fallot (ToF)

Apologies for the delay in uploads. I performed an unintentional experiment on my laptop and it did not go well. 16oz of water+laptop=laptop doesn’t work. But let’s get into some medicine!

Tetralogy of Fallot (ToF) is the most common cyanotic heart defect named after Arthur Fallot. ToF is one of the most common causes of “blue baby syndrome” which causes a pulmonary outflow tract that affects four different parts of the heart:

  1. Pulmonary stenosis
  2. Right ventricular hypertrophy (RVH)
  3. Overriding aorta (on top of both ventricles)
  4. Ventricular septal defect

To further understand this, we must have a good understanding of the anatomy of the heart. The normal heart is pictured below:

And the heart of a patient with ToF is depicted below:

The overriding aorta pushes more towards the middle septum which pushes the pulmonary artery over and causes it to be smaller in diameter. The hole in the septum then allows unoxygenated blood to freely flow over to the left ventricle which can then be pumped through the aorta. This is called right to left shunting. But why do these patients develop RVH? Well that can be explained by pressures. When the pulmonary artery is narrowed, there is an increase in the amount of pulmonary resistance. The RV is not supposed to pump against a lot of pressure so to compensate, the RV will thicken which is RVH.

We must also know that fluids like taking the path of least resistance; so if the pulmonary resistance pressure is greater than the systemic vascular resistance, then most of the blood will go across the ventricular defect and into the aorta. To further complicate things, there are three different types of severity.

Mild Pulmonary Resistance

This is sometimes called “Pink Tetralogy of Fallot”. This is the least severe type as there minimal amount of right ventricular outflow obstruction and malalignment of the conal septum. The patient is born “pink” and non-cyanotic but will become cyanotic over time. The pulmonary resistance is less than the systemic resistance which causes more blood to enter the pulmonary artery. And because of the ventricular defect, the oxygenated blood from the left side of the heart feels left out and some of it flows over to the right side to be pushed through the pulmonary artery. So both oxygenated and deoxygenated blood will flow into the pulmonary artery. It should be mentioned that these patients can develop CHF due to excess amount of pulmonary blood flow.

I did not go to art school and there is not a single artistic bone in my body but here is my picture depicting what is happening:

Moderate Pulmonary Resistance

These patients will be cyanotic at birth. There is now a moderate amount of pulmonary stenosis noted and the pulmonary valve/vein is moderately compressed. Because the pulmonary artery is compressed, the pressure will increase. Now the systemic vascular resistance is less than the pulmonary resistance so both deoxygenated and oxygenated will try to flow out through the aorta. Mixing deoxygenated blood with oxygenated blood will cause the patient to become hypoxic. Because of the obstruction and turbulence of the blood near the pulmonary artery, you can auscultate a harsh systolic murmur.

Severe Pulmonary Resistance

In this type, the pulmonary may be completely obstructed and will be cyanotic at birth. These patients may also have Pulmonary atresia which is a birth defect where the pulmonic valve does not form. This means that all of the blood going to the RV has nowhere to go right? Well when we are born, there is a small hole called the foramen ovale that separates the two atria. So blood is able to flow from the right side of the heart over to the left and allows the blood to be pumped into the aorta. The foramen ovale closes shortly after birth. There are two ways these patients are able to get deoxygenated blood to their lungs. One way is through the PDA. And no this isn’t public display of affection, PDA is the patent ductus arteriosus which connects the aorta and the pulmonary artery.

The RV pushes blood to the aorta where it can cross the PDA and go to the lungs where the blood can be oxygenated. Unfortunately, the PDA does close shortly after birth.

The second way is the an aortic to pulmonary artery collateral.

ECG Findings

ECG findings that can indicate ToF include:

  1. Right axis deviation
  2. RVH
  3. RBBB
  4. Sometimes widened QRS which correlates to worse ventricular dysfunction

Testing for ToF

A high level of suspicion should be had for newborns with cyanosis. But here are some tests that can help with the diagnosis:

  1. ECG
  2. Chest X-ray
  3. Echocardiogram
  4. Heart MRI

In patients who have a mild degree of ToF, there are a few signs and symptoms to raise your index of suspicion which include:

  1. Increased respiratory rate, dyspnea, and cyanosis during physical activity (This is called a “Tet Spell”)
  2. Child “squats” during activity
  3. Fatigue and loss of consciousness
  4. Difficulty feeding due to hypoxia
  5. Inability to gain weight and grow
  6. Fingernail clubbing due to chronic hypoxia (this usually occurs after 6 months)


The treatment for ToF varies on what degree of severity they have. All of these patients will need some form of surgery. And all medications given should be those that decrease pulmonary vascular resistance and increase systemic vascular resistance if needed. A temporary fix is placing a shunt or stent to open the pulmonary artery until a complete repair can be done with a patch on the septum.

You can also administer:

  1. Beta blockers to reduce spasm that occur in the infundibular region of the RV. Spasms in this region can cause a decrease in the amount of blood to go into the pulmonary artery.
  2. Oxygen administration
  3. Alprostadil (only for newborns). This medication temporarily maintains the patency of the ductus arteriosus and is great for patients with pulmonary atresia
  4. Knee to chest position

This is also simulated when the patient “squats” as discussed earlier in the post. If the patient is in a Tet Spell, squatting and knees to chest position causes an increase in the systemic vascular resistance which forces more blood to enter the pulmonary artery. This occurs because the difference in pressures in the pulmonary artery and systemically has decreased,

5. Alpha drugs to increase systemic vascular resistance

Check out this post to learn a bit more about the different types of receptors:

Implementing Beta Blockers and Hemodynamic Dosing Epinephrine for Cardiac Arrest

Epinephrine administration during a cardiac arrest has been a hot topic for quite some time. As I was creating the first cardiac arrest post (linked below), I began to think “why don’t we just administer a better medication?” Spending a crazy amount of time in the middle of the night for several weeks, I believeā€¦

Follow us on social media to stay up to date!


This site is meant to be used for educational use only. We strive to push evidence based medicine with no bias to help you obtain all the important information. You should always follow your protocols that have been set in place.

-Scopeducation Team (Matt)


Beerman, L. (2020, December). Tetralogy of FALLOT – Pediatrics. Retrieved April 04, 2021, from https://www.merckmanuals.com/professional/pediatrics/congenital-cardiovascular-anomalies/tetralogy-of-fallot

The Children’s Hospital of Philadelphia. (2014, March 26). Tetralogy of fallot (tof). Retrieved April 04, 2021, from https://www.chop.edu/conditions-diseases/tetralogy-fallot

Diaz-Frias, J., & Guillaume, M. (2020, November 20). Tetralogy of Fallot. Retrieved April 04, 2021, from https://www.ncbi.nlm.nih.gov/books/NBK513288/

Gibson, C., MD, & Feeney, K. (n.d.). Tetralogy of fallot echocardiography. Retrieved April 04, 2021, from https://www.wikidoc.org/index.php/Tetralogy_of_fallot_echocardiography

Pettersen, M. D. (2020, December 22). Tetralogy of Fallot with Pulmonary Atresia Medication: Prostaglandins, diuretic agents, Inotropic agents. Retrieved April 04, 2021, from https://emedicine.medscape.com/article/899368-medication#:~:text=Alprostadil%20is%20first%2Dline%20palliative,oxygenation%20and%20lower%20body%20perfusion.

Sanandajifar, H., MD. (n.d.). Tetralogy of FALLOT: Pediatric Echocardiography. Retrieved April 04, 2021, from https://pedecho.org/library/chd/tetralogy-fallot

Winn, K., & Hutchins, G. (1973, October). The pathogenesis of tetralogy of Fallot. Retrieved April 04, 2021, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1904044/

Leave a Reply

Shopping Cart
%d bloggers like this: